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SUMMARY 

An approximate expression for the peak variance, c+, in non-linear chromato- 
graphy has been derived in terms of a series expansion in the non-linearity parameter, 
KS. Terms that are dependent primarily on flow and effective diffusion, respectively, 
are found to have opposing effects on aa. The predicted.trends correlate satisfactorily 
with the results of a computer simulation of the problem. 

INTRODUCTION 

The mathematical model which was used to obtain an approximate expression 
for the first moment in non-linear chromatography1 has in the present study been 
extended to a calculation of the effects of non-linearity on the second moment. The 
results obtained from the model are again checked against a computer simulation 
of the corresponding non-linear chromatographic system. The basic differential equa- 
tion is the same as that of the previous work; non-ideal contributions from the sta- 
tionary phase are consequently not taken into account. This circumstance is not 
considered to affect the present objective of elucidating the basic facets of the non- 
linear effects, however, since the contribution from the stationary phase will be 
essentially analogous to that arising from mobile phase non-ideality. In fact, it is 
expected to be represented merely by a single additive term in the expression for 
the second moment. 
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. 
A = Z&/(X, + kr) is the non-linearity parameter where k, and kz are defined by the 
non-linear isotherm ‘, 

.‘, 
n = sk& -I- rk2C2 

; ., 

The symbols used have, as far as is possible, the same meaning as in ref. I. A complete 
list is ‘included at the end of the paper. 

Eqn. ‘3 can ‘be simplified by expanding I/(I + AC) in a binomial series and 
making use of the :fact that C and its first derivative tend to zero as z+ & co. It ‘,’ 
then follows that 
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be derived by substituting the zeroth-order (i.e., A -’ 0) expression for the concen- 
tration distribution. This is the Gaussian distribution 

c = (21x”;:)* ‘exp _ [(r ;$)‘] (10) 

mass 
The approximation is further improved by using the actual time-dependent 
per unit cross-section of the mobile phase. VZ, is then given approximately1 by 

The EG inleta is used to express 01s as 

q2= Wf 
21c -I- 2&t (12) 

This substitution yields, in general, 

I=0 

while the second-order expressions for Jz and J3 follow as 

(13) 

(14) 

J3 = 
3ilD,m; A2D,mz 

(8j7M - (3J3)xaf 
(15) 

Integration of eqn. 4 now results in the following second-order expression for 
dy$ : 
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For the graphical representation and comparison of results, it. is convenient 
‘to rewrite eqn. 16 in the dimensionless form 

s=mi_ [(I, +. yy - I]- 

,(2J2bb _,.(4J2)mo 
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where 

COMPUTER SIMULA?‘ION 

A computer simulation of eqn. 2 was carried out to test the ,validity of the 
theoretical model outlined above,. The details of the simulation procedure for an 
EG inlets is similar to that described previously l. Unfortunately, these numerical 
results differ strikingly from the predictions of the model (eqn. 17) even for small 
Xi, as can be seen from Fig. I where the non-linear contribution to the reduced 
second moment has been plot.ted as a function of the dimensionless time parameter 
y = @.wl’Wi 2. A comparison of results from first- and second-order expressions for 
onr2 revealed that no significant improvement is obtained by the inclusion of higher- 
order terms which suggests a basic deficiency in the theoretical model. 

Fig. I. -domparison of non-linear second moment contributions according to theoretical model 
and numerical simulation. AC1 = 0.x ; 26 = I cm/see; 12, = 20; 201 = 4.8. - - - -, Eqn. 25; L?/&c = 
0.011, De = 0.01. 

‘A’, D, = 
- - - - -, Eqn. 25; S2/Sn = 0.0x?, Do = 0~02: , Eqn. 17. +, De = 0.01; 

0.02; X, D, = 0.05; 0, D, = 0.110567. 

I The most unexpected features of the simulation- results is the occurence of, a 
change of sign in the derivative d(a& -’ &)/dt. :For .example, for ,a > o, one .wou.ld 
expect diffusional spreading to be invariably ;smaller than in the, corr.e,sponding’ 
linear.case owing to the smaller’ fraction of molecules .that:are subjected, to the .effect! 
of De. ‘This effect is indeed seento’be present, but .apparently there exists,an a’dditio’nal 
and ,ol$&e effect that becomes more pronounced,,as..Dc & decreased. Inspection, of. 

‘/..,1 
,e’qn., ‘4 reveals’ ,that I is, the only: term that ,. can’ .be responsible for ,such behaviour 

:: ‘,,>. : : 
and, aimore.:detailed analysis ‘of this&tegral is ‘clearly, r&&d: : :c : .’ “I ” 
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ANALYSIS OF TI-IE FLOW-VELOCITY CONTRIBUTION 

As the simple zeroth-order model is suspected to be inadequate in the evaluation 
of I, an attempt was made to derive a semi-empirical expression for this integral 
which contains a single empirical parameter. This parameter can then subsequently 
be adjusted by evaluating the integral numerically. If this parameter is to be constant, 
however, the complete functional dependence of I on all the relevant parameters 
is obviously required. An approximate expression for this purpose will now be derived, 

This tirst-order expression for I is given by 

I = - ,W(J:,“ZC2dZ - (Z)Jt,“C2dZ) (18) 

where the coordinate transformation % = z - Ut has been used. 
The first of these integrals can be rewritten as 

Jf,“ZC2dZ = s2’<Z)J:~C2dZ (1% 

where R’ is a dimensionless constant and use has been made of the general mean-value 
theorem for integrals3. Eqn. IS thus becomes 

I = - ;IUs2<Z) j+:C’dZ 

with *Q = 52’ - I. For a symmetrical 
a c o. When the integral J’tz Cs dZ 
distribution (eqn. IO), one finds 

while (% > is, to a good approximationl, given by 

<z>F- 

Substitution of eqns. 21 and 22 into eqn. IS therefore yields 

peak R = o, but for an asymmetrical peak 
is approximated by means of the Gaussian 

(21) 

I =WCd2U2w4 
[ 

1 _ 1 

8nD, (1 + y)‘f2 1 

(22) 

(23) 

in which the dependence of m, on ilCi has been neglected. For convenience, eqn. 23 
is rewritten in the dimensionless form 

I’= ID, 52 =_ 1;’ 
(ACi)2U2miwf 8n l- l 

(1 + yp2 1 (24) 

In order to test this functionaldependence, the I-integral (9t = I, eqn. 5) was 
evaluated numerically for the actual simulated peaks for a variety of ilCi and O6 
values., A graph of I’. against (I + y) -% should yield a, straight line in the small y 
region [i.e.; (1 + y)Ty 2 N, I]. ,Inspection of. Figs. :2 (A’ > o) and 3 (2’ > 0); reveals 
that the correspondence, especially in .the latter case, is ‘not ,p~~fect ~;‘deviatib.~s (,. ., 5 I’ I .‘ 

,. . . ,’ 
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Fig. 2. Flow velocity-dependent contribution to the derivative-with respect to time of the second 
moment. The theoretical prediction (- - - -, eqn. 24) is compared with the results of a numerical 
evaluation of the I-integral (1~ = I, eqn. 5). ZL = I cmlsec; ISI = zo; wi = 4.8. - - - -, Eqn. 24; 
Q/en = 0.011. X,X1 = 0.1, DB = 0.01; +, AC1 = 0.5, D, = 0.01; 0, AC1 = 0.1, D, = 0.110567; 
0) AC! = 0.5, D, = 0.1105G7. 
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moment. ,The theoretical prediction (- - - -; 
to. the derivative .with respect to time of .& SCCO’~~, ‘, 
eqn. 24) is compared with. theresults of-a numerical I; ': 

$&~~&&Xi!,Of'.ttii ‘~&to&l (?Z =’ I, eqn. 5). ‘24 = I &/s&; /s, = 20; & =’ 4,‘s: _ 2 _ _, Eqn; ‘2k i I’,: 
a6/8n,y 0.018. X, izci = - 0.1, D,= 0.01; +, AC, = - 0.5,. D, = 0.0.1; 0, Acl = - O.r,’ .,;; 
4,,,~:.?‘~slf:4567;,,,0,,.‘fC1;= ‘-! ols, Da = 0.110567. 
,. , .,’ I, ;. ; ,’ ,, 
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. 

Fig. 4, Comparison aof non-lincnr second-moment contributions according to, thco~etical ‘model 
and numerical simulation. AC, = 0.5 ; u =. I cm/see; k, = .ZO; WI = 4.8. - - - -,.Eqn.. 25 ; G?/fh = 

0.01 I; Dd,=.o.ox. - - - - -, Eqn, 25; &l/Sn = 0.011, D. = 0.02; --, Eqn. 17. -,\Boundary 
sffoct, ,C(Z,1) = o. f, D, = 0.01; A, D, = 0.02 ; X , ,D, = 0.05;’ 0, D, = 0.110567.. ,: ’ 
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from the predicted straight line do occur even in the small y region where higher- 
order effects should become negligible. On the other hand, the test is a stringent one 
and the numerical significance for crs is of lesser importance than that suggested by 
Figs. 2 and 3. In essence, the approximately quadratic dependence of this contri- 
bution in both Xl and U is confirmed. This is in contrast to the diffusion terms Js 
and Js which are, to the first order, predicted to be linear in &Cl and D,, This latter 
prediction was successfully verified by numerical integration. 

An expression for the reduced second moment including both flow velocity 
and diffusion terms follows from eqns. 17 and 23 as 

_ WJ2m [(I + y)llz _ J] + (aci)2mqn(l + y) -t_ 

&no 16c 

sz (ac~)2u2wfmj 

-I- sn’ D,2ma 
- [(J. -I- yy2 - J.] (25) 

The theoretical values for the non-linear os contribution which follow from 
eqn. 25 are compared with the simulation results in Figs. I (A > o), 4 (a > o), and 
5 (2 < 0). In the calculation for positive 2, an empirical value of Q/Sri =E: 0.011 was 
used, while for negative A, L?/Sn = 0.018 was found to be more appropriate. 

Fig. 5. Comparison of non-linear second-moment contributions rtccording to theoretical model .‘: 
and,;n’umericsll ;iimukLtjon. AC1 =, 7 0.5; u 7 .I. cm/see; tcI ,= 20: wJ =.4,8. -- - -, &p. 25; ',, 

~~8n~=~o:,o18~ D,= 0.01.: - -- - -, Eqn. 25; '6?/8n= 0.018, D, --.o.b2. -, 

Dd +o.qx; ;h,:&k o;oz;‘o, L&g 3 O.IIO567.~ 
I’:qn. 17. +., ‘: L. ‘. ‘, ‘: ( .(. ‘.: 

:,,’ .’ _I, '. 
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Fig. 6. Illustration of the time-dependence of the linear and non-linear contributions to the 
total peak variance. u = 1 cm/set; 12, = 20; w1 = 4.8. cn* (eqn. 11). X, 

+, ilCl = 0.5, D, = 0.01; 0, ilC!= 0.1, D, = 0:11056,; 0, AC1 
AC1 = 0.1, 

D 0” 0.01; = 0.5, D, = 
0.110567. 
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Fig. 7. Illustration of the time-dependence of the linear and non-linear contributions $0 the to!al 
peak wariance. zc = 1 cmpc; 1~1 = 20; wi = 4.5. -, CYI* (eqn. II). x, AC1 = - 0.1, D. 7 
y;,$7, ;iCl= - 0.5, e = 0.01; 0, &= - 0.1, D,,= 0.110567; 0, izci = - o'& D,,= 

. . 
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DlSCUSSION 

The opposing non-linear contributions of flow and diffusion to peak variance 
are summarized in Figs. I, 4, and 5. The success of the rnodcl calculations in pre- 
dicting these deviations can now be gauged by comparing them with the simula- 
tion results. 

The relatively large deviations of model results from simulation results observed 
for negative il in Fig. 5 are most probably due to the more complicated actual 
functional form of the flow-velocity term in this case (see Fig. 3). It is clear, however, 
that the attendant phenomena are at least qualitatively well understood. In assessing 
the quantitative merit of the theoretical predictions, one should keep in mind that 
the results are presented in such a way as to accentuate any discrepancies. On a 
scale comparable with the linear peak variance contributions, the non-linear effects 
are ordinarily quite small, as can be seen from typical cases for positive and negative il 
depicted in Figs. G and 7. This statement becomes invalid when the parameter 
?C1Uwl/D, (eqn. 25, last term) becomes large enough for the non-linear contribution 
to become comparable to the linear CT& contribution. This will be the case for columns 
with a small D, value (i.e., a small linear plate height, If 1). An approsimate criterion 
for assessing the relative contributions is found by setting the two contributions 
equal to each other. Hr defined by 

H, = & Ut k: 20,/U 

is for this pointithen found to be given4 by 

H, = 

where the approximation of large y values has been used. 
An idea of the accuracy requi.red to calculate these non-linear effects is provided 

by a consideration of the amount of cut-off which is allowed. In a typical instance, 
the boundary condition C(Z,t) = o for lZl > 40 cm was found to cut off all values 
of C c 0.168 o/0 of C,,,. This yielded the sharply curving bold line in Fig. 4a. Increase 
of the % range to lZ/ > Go cm changed the boundary condition to C < 0,00045 O/ 
of Cmax. and resulted in the solid line, which shows that the excessive curvature 
of the bold line was due, not to a physically significant phenomenon, but merely to 
an invalid numerical approximation. Unfortunately, accuracy is limited by the com- 
puting time available. For instance, in the example cited above, the increased ac- 
curacy was only obtained’ at the expense of a 50. Y0 increase in computing time and 
as I set of computing time in the present analysis corresponds roughly to I set of 
elution time, further refinement of the simulation results become unrealistic,, 

SYMBOLS 

c = mass of solute per unit mobile phase volume 
Ci .r =’ ,value ,of:C at t = o ,at the.inlet 
?e’: : ,. 7.:'. Di/(l + 12,) '. 

D* = effective diffusion coefficient 
', " 
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I = convenient parameter, eqn. 3 
I’ = convenjent parameter, eqn. 24 ’ . 

convenient parameter, eqn. 3 
convenient parameter, eqn. G 
convenient parameter, eqn. 7 
convenient parameter, eqn, S 
parameter in adsorption isotherm 
parameter in adsorption isotjlerxn 
zerotli moment 
mass of solute per unit cross-section of the mobile phase at inlet at time 
t =o 

mass of solute adsorbed per unit column volume 
time 

%/(I + W 
carrier flow velocity 
width of plug inlet sample profile 
4nD,t/wi2; ,dimensionless time parameter 
axial coordinate 
first moment of concentration-distance distribution 
x- Ut ; relative axial coordinate 
(2) - ut 

Greek synabols 
e = 

A = 
t-J2 5 

ai2 = 
cr12 = 
bn12 = 
SE 
Q : 

void fraction 
non-linearity parameter (eqn. 2) 

total variance 
inlet variance 
total variance in linear chromatograplly 
total variance in non-linear chromatography 
convenient parameter, eqn. 20 

convenient parameter, eqn. Ig 
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